Classification and Logistic Regression

Kenneth (Kenny) Joseph

Announcements

- PA2 due Sunday night
- Quiz 4 is out
- Midterm is March 17th
 - In class, mostly
 - One page handwritten notes, front and back
 - Official Accessibility requests due by next Tuesday
- Vote on when to do the review...
- Questions?

Classification – Supervised Learning with Discrete outcomes

airplane

automobile

bird

cat

deer

dog

Classification – Supervised Learning with Discrete outcomes

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Text: i'm christian

Sentiment: 0.10000000149011612

When I fed it "I'm a Sikh" it said the statement was even more positive

Text: i'm a sikh

Sentiment: 0.30000001192092896

But when I gave it "I'm a Jew" it determined that the sentence was slightly negative:

Text: i'm a jew

Sentiment: -0.20000000298023224

https://www.vice.com/en_us/article/ne3nkb/google-artificial-intelligence-bias-apology

Now that you have the lay of the land with ML and what it does (at least at a high level), I will begin to emphasize these societal aspects a bit more

What is a classification model class?

A function h that maps $h(\mathbf{x}) \rightarrow y$ when y is a discrete random variable

Quiz: Examples?

A linear model for classification

A linear model for classification

Linear models

The models we considered above (as we have seen before) are called *linear models* (because you can literally draw a line to present them in 2D). In particular, in the case of two input variables, a linear model is **completely defined** once you specify the line as which of the two sides is the positive side (and the other side automatically becomes the negative side).

Like regression, linear models are actually fairly effective for classification

@_kenny_joseph

But obviously not always enough

Quiz: Can you think of a way to specify these models?

Following on this quiz...

Following on this quiz...

We will talk a lot about these drawings of **decision boundaries**... different models allow for different drawings

Does there always exist non-linear model?

Does there always exist non-linear model?

Why Yes?

Convince yourself that given any dataset there is always a (possibly non-linear) model that fits it perfectly.

Hint: Given a dataset, can you use the dataset itself to define the model fits it perfectly? (Do not worry about how complicated the resulting model will be-- you just need to argue that such a model exists.) And do not peek below before you have spent some time thinking about the answer:-)

Quiz: What is likely to come with this added complexity when we find a perfect model on the training data?

The bias-variance tradeoff doesn't just go away.

overfitting

underfitting

Good balance

Review

 For binary classification, our model is a curve (function) in the (possibly transformed) feature space.

Quiz:

- In regression, that curve ...
- In classification, that curve...
- In 2 dimensions (and 1!) we can draw the decision boundaries in intuitive ways
- Linear models are pretty effective, but as in regression, we can get fancier, and this comes with a cost.
- OK, so, how do we actually get that linear model?

A new task... stance detection

Stance detection: The task of determining whether someone is for or against a particular thing. We'll focus on "stance towards 4/574"

A new task... stance detection

Stance detection: The task of determining whether someone is for or against a particular thing. We'll focus on "stance towards 4/574"

This class is garbage. The professor makes bad jokes and I can't read his handwriting

Arguably the greatest moments in human history have come when Kenny takes the floor for 4/574 each week

Stance detection in the real world

The prof's jokes are bad and he can't make a quiz without an error to save his life but I occasionally learn some stuff

Stance detection in the real world

Staying at home with kids is more stressful than going to work, according to [a new study].

... pro or anti-lockdown measures?

Next week: Annotation practice, measures of agreement

Back to the example...

This class is garbage. The professor makes bad jokes and I can't read his handwriting

- How would you approach the task of stance detection? Specifically...
 - What would your features be?
 - How would you make decisions based on those features?
 - What loss function would you use?

Approach 1: Bag of words + Linear threshold classifier

- Convert each course evaluation statement into a "bag of words" representation
- 2. Fix a weight for each word in terms of how having it in a sentence implies a positive/pro or negative/anti stance
- Sum up the weights for all of the words to get a score
- 4. If the **score** is > 0, predict "pro-5/474", otherwise, predict "anti"

This class is garbage. The professor makes bad jokes and I can't read his handwriting

The prof's jokes are bad and he can't make a quiz without an error to save his life but I occasionally learn some stuff

Arguably the greatest moments in human history have come when Kenny takes the floor for 4/574 each week

- How might we get these values in the easiest possible way?
- ... later... how we can learn them from data

Word	Weight (w)
garbage	-5.0
bad	-3.0
can't	-0.5
bad	-3.0
error	-2.1
learn	3.0
greatest	4.0
Arguably, human, professor, handwriting,	0.0

This class is garbage. The professor makes bad jokes and I can't read his handwriting

The prof's jokes are bad and he can't make a quiz without an error to save his life but I occasionally learn some stuff

Arguably the greatest moments in human history have come when Kenny takes the floor for 4/574 each week

Word	Weight (w)
garbage	-5.0
bad	-3.0
can't	-0.5
bad	-3.0
error	-2.1
learn	3.0
greatest	4.0
Arguably, human, professor, handwriting,	0.0

The prof's jokes are bad and he can't make a quiz without an error to save his life but I occasionally learn some stuff

Word	Weight (w)
garbage	-5.0
bad	-3.0
can't	-0.5
bad	-3.0
error	-2.1
learn	3.0
greatest	4.0
Arguably, human, professor, handwriting,	0.0

This class is garbage. The professor makes bad jokes and I can't read his handwriting

The prof's jokes are bad and he can't make a quiz without an error to save his life but I occasionally learn some stuff

Arguably the greatest moments in human history have come when Kenny takes the floor for 4/574 each week

Geometric View - Threshold

The prof's jokes are bad and he can't make a quiz to save his life but I occasionally learn some stuff

Jokes are bad, lectures are bad

Jokes are bad, lectures are bad, I learn absolutely nothing

Word	Weight (w)
bad	-1.5
learn	1

#bad

Geometric View - Score

The prof's jokes are bad and he can't make a quiz to save his life but I occasionally learn some stuff

Jokes are bad, lectures are bad

Jokes are bad, lectures are bad, I learn absolutely nothing

Word	Weight (w)
bad	-1.5
learn	1

Adapted from: https://courses.cs.washington.edu/courses/cse416/21sp/

#bad

Cool!

- We have built our first classifier!
- Quiz: Did this classifier use (training) data at all?
- How could it have used data to inform the model?

...Put another way, how to learn word weights?

...Put another way, how to learn word weights?

An online algorithm to learn weights for the words...

The perceptron algorithm.

An early, well-known approach!

IMO, can complicate understanding at this point in the class

```
Algorithm 5 PerceptronTrain(D, MaxIter)
 w_d \leftarrow o, for all d = 1 \dots D
                                                                         // initialize weights
                                                                            // initialize bias
 2: b ← 0
 3: for iter = 1 ... MaxIter do
       for all (x,y) \in D do
         a \leftarrow \sum_{d=1}^{D} w_d x_d + b
                                                    // compute activation for this example
         if ya \leq o then
           w_d \leftarrow w_d + yx_d, for all d = 1 \dots D
                                                                          // update weights
           b \leftarrow b + y
                                                                              // update bias
          end if
       end for
 ne end for
 return w_0, w_1, ..., w_D, b
Algorithm 6 PerceptronTest(w_0, w_1, ..., w_D, b, \hat{x})
 a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b
                                                // compute activation for the test example
```


2: return SIGN(a)

Another idea

- Take our basic tools!
- Specify a model class (we already have one!)

Define a loss function ... what?

Optimize (how?)

Trying to optimize 0/1 Loss in 1 Dimension

Trying to optimize 0/1 Loss in 1 Dimension

Assume w_2 is fixed, and we want to min. loss w.r.t. w_2

Can we just run gradient descent on this?

and Engineering

Can we just run gradient descent on this?

and Engineering

What to do? Optimization view...

Change the loss function to something we can more easily optimize! ... which is...?

Approach 2: Bag of words + Linear classifier, Optimization view

- Convert each course evaluation statement into a "bag of words" representation
- 2. Specify model class:
- 3. Define loss function:
- 4. Optimize loss fn.:
- 5. For new test point, compute h(x) =
- 6. If h(x) is > 0, predict "pro", otherwise, predict "anti"

Problem: How to interpret predictions? What does h(x)=10 mean?

What to do? Probabilistic view...

Model $p(y \mid x)$!

P(
$$y = \frac{1}{1}$$
 | This class is garbage. The professor makes bad jokes and I can't read his handwriting $= ?$

$$P(y = \frac{1}{1 + 1} | \text{The class is fine. I wish he would stop making }) = ?$$

- Convert each course evaluation statement into a "bag of words" representation
- 2. Specify form of $p(y \mid x)$
- 3. Write down (log) likelihood function
- 4. Maximize log-likelihood fn.
- 5. Use trained model to estimate p(y=+ | x)
- 6. If p(+ | x) > .5, predict "pro-5/474", otherwise, predict "anti"

Question: How to specify p(y|x)?

Logistic Function

Use a function that takes numbers arbitrarily large/small and maps them between 0 and 1.

$$sigmoid(Score(x)) = \frac{1}{1 + e^{-Score(x)}}$$

Score(x)	sigmoid(Score(x))
$-\infty$	
-2	
0	
2	
∞	

Interpreting Score

Xº O V

Directly from: https://courses.cs.washington.edu/courses/cse416/21sp/

- Convert each course evaluation statement into a "bag of words" representation
- 2. Specify form of $P(y_i = +1|x_i, w) = sigmoid(score(x)) = \frac{1}{1 + e^{-w^T x_i}}$
- 3. Write down (log) likelihood function
- 4. Maximize log-likelihood fn.
- 5. Use trained model to estimate p(+ | x)
- 6. If p(+ | x) > .5, predict "pro-5/474", otherwise, predict "anti"

- 1. Convert each course evaluation statement into a "bag of words" representation
- 2. Specify form of $P(y_i = +1|x_i, w) = \frac{1}{1 + e^{-w^T x_i}}$
- 3. Write down (log) likelihood function

- 1. Convert each course evaluation statement into a "bag of words" representation
- 2. Specify form of $P(y_i = +1|x_i, w) = \frac{1}{1 + e^{-w^T x_i}}$
- 3. Write down (log) likelihood function
- 4. Maximize log-likelihood fn.

- Convert each course evaluation statement into a "bag of words" representation
- 2. Specify form of $P(y_i = +1|x_i, w) = \frac{1}{1 + e^{-w^T x_i}}$
- 3. Write down (log) likelihood function

4. Maximize log-likelihood fn.

- No closed form solution!
- Have to use gradient ascent/descent
- Can do slightly better by using the second derivative as well to guide the movement through the space...
- This is the Newton-Raphson method

- Convert each course evaluation statement into a "bag of words" representation
- 2. Specify form of $P(y_i = +1 | x_i, w) = \frac{1}{1 + e^{-w^T x_i}}$
- 3. Write down (log) likelihood function
- 4. Maximize log-likelihood fn.
- 5. Use trained model to estimate p(+ | x)
- 6. If p(+ | x) > .5, predict "pro-5/474", otherwise, predict "anti"

Some details we'll get to

- Do we have to use .5 as the threshold for classification?
 - No, and sometimes it's actually not a good idea
- Can we use logistic regression to learn non-linear decision boundaries?
 - Yes! How?
- Can we regularize logistic regression?
 - Yes! How?
- How do we get labels for data?
 - (Kind of discussed) Annotation! Lecture next week, PA3!
- Can we go beyond "bag of words"?
 - Yes! Ideas? ... lectures post Spring break!
- How do we evaluate classifiers?
 - A bit now, a bit later

OK!

What questions do you have?!

Evaluating classification models

Accuracy - how many did we get correct?

Accuracy =
$$(8 + 7) / (8 + 7 + 2 + 3)$$
= .75

Precision - Of + guesses, how many actually +s?

Precision =
$$7/(7+3) = .7$$

Recall - Of actual +, how many do we guess?

Precision =
$$7/(7+2) = .78$$

Evaluation Review

- Different metrics for different things
- Other performance metrics:
 - •F1 Score
 - • •
- Other considerations
 - Class imbalance (accuracy bad)
 - • •

What is missing from these evaluations?

Other questions we might ask

- Which one had higher recall?
- Which one had higher precision?
- Was that the same for both groups?

